排列組合問(wèn)題是歷年公務(wù)員考試行測(cè)的必考題型,并且隨著近年公務(wù)員考試越來(lái)越熱門(mén),國(guó)考中這部分題型的難度也在逐漸的加大,解題方法也趨于多樣化。解答排列組合問(wèn)題,必須認(rèn)真審題,明確是屬于排列問(wèn)題還是組合問(wèn)題,或者屬于排列與組合的混合問(wèn)題;同時(shí)要抓住問(wèn)題的本質(zhì)特征,靈活運(yùn)用基本原理和公式進(jìn)行分析,還要注意講究一些策略和方法技巧。
一、排列和組合的概念
排列:從n個(gè)不同元素中,任取m個(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列。
組合:從n個(gè)不同元素種取出m個(gè)元素拼成一組,稱(chēng)為從n個(gè)不同元素取出m個(gè)元素的一個(gè)組合。
二、七大解題策略
1.特殊優(yōu)先法
特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮。對(duì)于有附加條件的排列組合問(wèn)題,一般采用:先考慮滿(mǎn)足特殊的元素和位置,再考慮其它元素和位置。
例:從6名志愿者中選出4人分別從事翻譯、導(dǎo)游、導(dǎo)購(gòu)、保潔四項(xiàng)不同的工作,若其中甲、乙兩名志愿者都不能從事翻譯工作,則不同的選派方案共有( )
(A) 280種 (B)240種 (C)180種(D)96種
正確答案:【B】
解析:由于甲、乙兩名志愿者都不能從事翻譯工作,所以翻譯工作就是“特殊”位置,因此翻譯工作從剩下的四名志愿者中任選一人有C(4,1)=4種不同的選法,再?gòu)钠溆嗟?人中任選3人從事導(dǎo)游、導(dǎo)購(gòu)、保潔三項(xiàng)不同的工作有A(5,3)=10種不同的選法,所以不同的選派方案共有 C(4,1)×A(5,3)=240種,所以選B。
2.科學(xué)分類(lèi)法
問(wèn)題中既有元素的限制,又有排列的問(wèn)題,一般是先元素(即組合)后排列。
對(duì)于較復(fù)雜的排列組合問(wèn)題,由于情況繁多,因此要對(duì)各種不同情況,進(jìn)行科學(xué)分類(lèi),以便有條不紊地進(jìn)行解答,避免重復(fù)或遺漏現(xiàn)象發(fā)生。同時(shí)明確分類(lèi)后的各種情況符合加法原理,要做相加運(yùn)算。
例:某單位邀請(qǐng)10為教師中的6為參加一個(gè)會(huì)議,其中甲,乙兩位不能同時(shí)參加,則邀請(qǐng)的不同方法有()種。
A.84 B.98 C.112 D.140
正確答案【D】
解析:按要求:甲、乙不能同時(shí)參加分成以下幾類(lèi):
a.甲參加,乙不參加,那么從剩下的8位教師中選出5位,有C(8,5)=56種;
b.乙參加,甲不參加,同(a)有56種;
c.甲、乙都不參加,那么從剩下的8位教師中選出6位,有C(8,6)=28種。
故共有56+56+28=140種。
3.間接法
即部分符合條件排除法,采用正難則反,等價(jià)轉(zhuǎn)換的策略。為求完成某件事的方法種數(shù),如果我們分步考慮時(shí),會(huì)出現(xiàn)某一步的方法種數(shù)不確定或計(jì)數(shù)有重復(fù),就要考慮用分類(lèi)法,分類(lèi)法是解決復(fù)雜問(wèn)題的有效手段,而當(dāng)正面分類(lèi)情況種數(shù)較多時(shí),則就考慮用間接法計(jì)數(shù).
例:從6名男生,5名女生中任選4人參加競(jìng)賽,要求男女至少各1名,有多少種不同的選法?
A.240 B.310 C.720 D.1080
正確答案【B】
解析:此題從正面考慮的話(huà)情況比較多,如果采用間接法,男女至少各一人的反面就是分別只選男生或者女生,這樣就可以變化成C(11,4)-C(6,4)-C(5,4)=310。