2011年中招考試:《初中數(shù)學(xué)》競(jìng)賽講座(1)
練 習(xí)
1.填空題
(1)有四個(gè)互不相等的自然數(shù),最大數(shù)與最小數(shù)的差等于4,最大數(shù)與最小數(shù)的積是一個(gè)奇數(shù),而這四個(gè)數(shù)的和是最小的兩位奇數(shù),那么這四個(gè)數(shù)的乘積是______.
(2)有五個(gè)連續(xù)偶數(shù),已知第三個(gè)數(shù)比第一個(gè)數(shù)與第五個(gè)數(shù)和的 多18,這五個(gè)偶數(shù)之和是____.
(3)能否把1993部電話中的每一部與其它5部電話相連結(jié)?
答____.
2.選擇題
(1)設(shè)a、b都是整數(shù),下列命題正確的個(gè)數(shù)是( )
、偃鬭+5b是偶數(shù),則a-3b是偶數(shù);
、谌鬭+5b是偶數(shù),則a-3b是奇數(shù);
③若a+5b是奇數(shù),則a-3b是奇數(shù);
、苋鬭+5b是奇數(shù),則a-3b是偶數(shù).
(A)1 (B)2 (C)3 (D)4
(2)若n是大于1的整數(shù),則 的值( ).
(A)一定是偶數(shù) (B)必然是非零偶數(shù)
(C)是偶數(shù)但不是2 (D)可以是偶數(shù),也可以是奇數(shù)
(3)已知關(guān)于x的二次三項(xiàng)式ax2+bx+c(a、b、c為整數(shù)),如果當(dāng)x=0與x=1時(shí),二次三項(xiàng)式的值都是奇數(shù),那么a( )
(A)不能確定奇數(shù)還是偶數(shù) (B)必然是非零偶數(shù)
(C)必然是奇數(shù) (D)必然是零
3.(1986年宿州競(jìng)賽題)試證明11986+91986+81986+61986是一個(gè)偶數(shù).
4.請(qǐng)用0到9十個(gè)不同的數(shù)字組成一個(gè)能被11整除的最小十位數(shù).
5.有n 個(gè)整數(shù),共積為n,和為零,求證:數(shù)n能被4整除
6.在一個(gè)凸n邊形內(nèi),任意給出有限個(gè)點(diǎn),在這些點(diǎn)之間以及這些點(diǎn)與凸n邊形頂點(diǎn)之間,用線段連續(xù)起來(lái),要使這些線段互不相交,而且把原凸n邊形分為只朋角形的小塊,試證這種小三我有形的個(gè)數(shù)與n有相同的奇偶性.
7.(1983年福建競(jìng)賽題)一個(gè)四位數(shù)是奇數(shù),它的首位數(shù)字淚地其余各位數(shù)字,而第二位數(shù)字大于其它各位數(shù)字,第三位數(shù)字等于首末兩位數(shù)字的和的兩倍,求這四位數(shù).
8.(1909年匈牙利競(jìng)賽題)試證:3n+1能被2或22整除,而不能被2的更高次冪整除.
9.(全俄15屆中學(xué)生數(shù)學(xué)競(jìng)賽題)在1,2,3…,1989之間填上“+”或“-”號(hào),求和式可以得到最小的非負(fù)數(shù)是多少?
相關(guān)推薦:·2021中考語(yǔ)文閱讀理解最全的33套答題公式 (2020-11-10 17:20:05)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物技術(shù) (2019-11-8 14:53:20)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的多樣性 (2019-11-8 14:50:27)
·2020中考生物知識(shí)點(diǎn)結(jié)構(gòu)圖分類整理:生物的生殖發(fā)育與遺 (2019-11-8 14:48:17)
2022年海南中考地理真題及答案已公布
2022年海南中考生物真題及答案已公布
2022年海南中考?xì)v史真題及答案已公布
2022年海南中考政治真題及答案已公布
2022年海南中考化學(xué)真題及答案已公布
2022年海南中考物理真題及答案已公布
2022年海南中考英語(yǔ)真題及答案已公布
2022年海南中考數(shù)學(xué)真題及答案已公布
2022年海南中考語(yǔ)文真題及答案已公布
2022年福建漳州中考成績(jī)查詢?nèi)肟谝验_通
2022廣東汕尾中考成績(jī)7月13日公布
2022年黑龍江齊齊哈爾中考成績(jī)查詢?nèi)肟谝?/a>
2022年黑龍江哈爾濱中考成績(jī)查詢?nèi)肟谝验_
2022年安徽亳州中考成績(jī)7月2日公布
2022年安徽銅陵中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022年福建廈門中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)
2022寧夏銀川中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
2022年吉安市中考成績(jī)查詢?nèi)肟谝验_通 點(diǎn)擊
國(guó)家 | 北京 | 天津 | 上海 | 重慶 |
河北 | 山西 | 遼寧 | 吉林 | 江蘇 |
浙江 | 安徽 | 福建 | 江西 | 山東 |
河南 | 湖北 | 湖南 | 廣東 | 廣西 |
海南 | 四川 | 貴州 | 云南 | 西藏 |
陜西 | 甘肅 | 寧夏 | 青海 | 新疆 |
黑龍江 | 內(nèi)蒙古 | 更多 |
·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·執(zhí)業(yè)藥師考試培訓(xùn) 試聽 ·報(bào)關(guān)員考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·華圖公務(wù)員培訓(xùn) 試聽
·二級(jí)建造師考試培訓(xùn) 試聽 ·公務(wù)員培訓(xùn) 網(wǎng)校 試聽
·一級(jí)建造師考試培訓(xùn) 試聽 ·結(jié)構(gòu)師考試培訓(xùn) 試聽
·注冊(cè)建筑師考試培訓(xùn) 試聽 ·造價(jià)師考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·咨詢師考試培訓(xùn) 試聽
·衛(wèi)生職稱考試培訓(xùn) 試聽 ·監(jiān)理師考試培訓(xùn) 試聽
·報(bào)關(guān)員考試培訓(xùn) 試聽 ·經(jīng)濟(jì)師考試培訓(xùn) 試聽
·銀行從業(yè)考試培訓(xùn) 試聽 ·會(huì)計(jì)證考試培訓(xùn) 試聽
·證券從業(yè)考試培訓(xùn) 試聽 ·注冊(cè)會(huì)計(jì)師培訓(xùn) 試聽
·期貨從業(yè)考試培訓(xùn) 試聽 ·統(tǒng)計(jì)師考試培訓(xùn) 試聽
·國(guó)際商務(wù)師考試培訓(xùn) 試聽 ·稅務(wù)師考試培訓(xùn) 試聽
·人力資源師考試培訓(xùn) 試聽 ·評(píng)估師考試培訓(xùn) 試聽
·管理咨詢師考試培訓(xùn) 試聽 ·審計(jì)師考試培訓(xùn) 試聽
·報(bào)檢員考試培訓(xùn) 試聽 ·高級(jí)會(huì)計(jì)師考試培訓(xùn) 試聽
·外銷員考試培訓(xùn) 試聽 ·公務(wù)員 試聽 教育門戶
·二級(jí)建造師考試培訓(xùn) 試聽 ·招標(biāo)師考試培訓(xùn) 試聽
·造價(jià)師考試培訓(xùn) 試聽 ·物業(yè)管理師考試培訓(xùn) 試聽
·監(jiān)理師考試培訓(xùn) 試聽 ·設(shè)備監(jiān)理師考試培訓(xùn) 試聽
·安全師考試培訓(xùn) 試聽 ·巖土工程師考試培訓(xùn) 試聽
·咨詢師考試培訓(xùn) 試聽 ·投資項(xiàng)目管理師培訓(xùn) 試聽
·結(jié)構(gòu)師考試培訓(xùn) 試聽 ·公路監(jiān)理師考試培訓(xùn) 試聽
·建筑師考試培訓(xùn) 試聽 ·衛(wèi)生資格考試培訓(xùn) 試聽
·質(zhì)量資格考試培訓(xùn) 試聽 ·執(zhí)業(yè)藥師考試培訓(xùn) 試聽
·造價(jià)員考試培訓(xùn) 試聽 ·執(zhí)業(yè)醫(yī)師考試培訓(xùn) 試聽