久久久国产精品秘人口麻豆|永久免费AV无语国产|人成电影免费中文字幕|久久AV嫩草影院2

    1. <dfn id="yitbn"><samp id="yitbn"><progress id="yitbn"></progress></samp></dfn>

          <div id="yitbn"></div>

          1. 首頁 - 網(wǎng)校 - 萬題庫 - 美好明天 - 直播 - 導(dǎo)航
            熱點(diǎn)搜索
            學(xué)員登錄 | 用戶名
            密碼
            新學(xué)員
            老學(xué)員

            2019考研高數(shù) 38個(gè)知識(shí)點(diǎn)必會(huì)!

            來源:考試吧 2018-4-28 10:11:07 要考試,上考試吧! 考研萬題庫
            2019考研高數(shù) 38個(gè)知識(shí)點(diǎn)必會(huì)!更多2019考研信息,請(qǐng)關(guān)注考試吧考研網(wǎng)或搜索公眾微信號(hào)“萬題庫考研”!

              一、函數(shù)極限連續(xù)

              1、正確理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。

              2、理解極限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個(gè)重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會(huì)用等價(jià)無窮小求極限。

              3、理解函數(shù)連續(xù)性的概念,會(huì)判別函數(shù)間斷點(diǎn)的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會(huì)應(yīng)用這些性質(zhì)。重點(diǎn)是數(shù)列極限與函數(shù)極限的概念,兩個(gè)重要的極限:lim(sinx/x)=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點(diǎn)是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

              二、一元函數(shù)微分學(xué)

              1、理解導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。

              2、掌握導(dǎo)數(shù)的四則運(yùn)算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。

              3、理解并會(huì)用羅爾中值定理,拉格朗日中值定理,了解并會(huì)用柯西中值定理。

              4、理解函數(shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡單應(yīng)用,會(huì)用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點(diǎn),會(huì)求函數(shù)圖形水平鉛直和斜漸近線。

              5、了解曲率和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑及兩曲線的交角。

              6、掌握用羅必塔法則求未定式極限的方法,重點(diǎn)是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點(diǎn)的求法。難點(diǎn)是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計(jì)算。

              三、一元函數(shù)積分學(xué)

              1、理解原函數(shù)和不定積分和定積分的概念。

              2、掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。

              3、會(huì)求有理函數(shù)、 三角函數(shù)和簡單無理函數(shù)的積分。

              4、理解變上限積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。

              5、了解廣義積分的概念并會(huì)計(jì)算廣義積分。

              6、掌握用定積分計(jì)算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點(diǎn)是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計(jì)算及應(yīng)用。難點(diǎn)是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

              四、向量代數(shù)與空間解析幾何

              1、理解向量的概念及其表示。

              2、掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個(gè)向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式以及用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。

              3、掌握平面方程和直線方程及其求法,會(huì)利用平面直線的相互關(guān)系解決有關(guān)問題。

              4、理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

              5、了解空間曲線的參數(shù)方程和一般方程;了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。

              五、多元函數(shù)微分學(xué)

              1、了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。

              2、理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會(huì)求全微分。

              3、理解方向?qū)?shù)與梯度的概念并掌握其計(jì)算方法。

              4、掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法,會(huì)求隱函數(shù)的偏導(dǎo)數(shù)。

              5、了解曲線的切線和法平面及曲面的切平面和法線的概念,掌握二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求多元函數(shù)的最大值和最小值及一些簡單的應(yīng)用問題。

              重點(diǎn)是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全重點(diǎn)是二元函數(shù)的極限和連續(xù)的概念,偏導(dǎo)數(shù)與全微分的概念及計(jì)算復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度的概念及其計(jì)算?臻g曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)極值。

              難點(diǎn)是多元復(fù)合函數(shù)的求導(dǎo)法,二函數(shù)的泰勒公式。

              六、多元函數(shù)積分學(xué)

              1、理解二重積分與三重積分的概念,了解重積分的性質(zhì)。

              2、掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計(jì)算方法,會(huì)計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))。

              3、理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系;掌握計(jì)算兩類曲線積分的方法;掌握格林公式并會(huì)運(yùn)用平面曲線積分與路徑無關(guān)的條件。

              4、了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法。

              5、會(huì)用重積分、曲線積分和曲面積分求一些幾何量和物理量。重點(diǎn)是利用直角坐標(biāo)、極坐標(biāo)計(jì)算二重積分。利用直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)計(jì)算三重積分。兩類曲線積分的概念、性質(zhì)及計(jì)算,格林公式。兩類曲面積分的概念、性質(zhì)及計(jì)算,高斯公式。難點(diǎn)是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計(jì)算。第二類曲面積分與斯托克斯公式。

              七、無窮級(jí)數(shù)

              1、掌握級(jí)數(shù)的基本性質(zhì)及其級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)與p級(jí)數(shù)的收斂性;掌握比值審斂法,會(huì)用正項(xiàng)級(jí)數(shù)的比較與根值審斂法。

              2、會(huì)用交錯(cuò)級(jí)數(shù)的萊布尼茲定理,了解絕對(duì)收斂和條件收斂的概念及它們的關(guān)系。

              3、會(huì)求冪級(jí)數(shù)的和函數(shù)以及數(shù)項(xiàng)級(jí)數(shù)的和,掌握冪級(jí)數(shù)收斂域的求法。

              4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的馬克勞林展開式,會(huì)用它們將簡單函數(shù)作間接展開;會(huì)將定義在[-L,L]上的函數(shù)展開為傅立葉級(jí)數(shù),會(huì)將定義在上的函數(shù)展開為正弦級(jí)數(shù)和余弦函數(shù)。重點(diǎn)是數(shù)項(xiàng)級(jí)數(shù)的概念與性質(zhì),正項(xiàng)級(jí)數(shù)的審斂法,交錯(cuò)級(jí)數(shù)及其審斂法,絕對(duì)收斂與條件收斂的概念。冪級(jí)數(shù)的收斂半徑、收斂區(qū)間的求法,將函數(shù)展成傅立葉級(jí)數(shù)。難點(diǎn)是求冪級(jí)數(shù)的和函數(shù),將函數(shù)展成冪級(jí)數(shù)、傅立葉級(jí)數(shù)。

              八、常微分方程

              1、了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。

              2、會(huì)用降階法解y(n)=f(x),y″=f(x,y),y″=f(y,y')類的方程;理解線性微分方程解的性質(zhì)和解的結(jié)構(gòu)。

              3、掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。

              4、會(huì)解包含兩個(gè)未知函數(shù)的一階常系數(shù)線性微分方程組。重點(diǎn)是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數(shù)線性微分方程的解法。難點(diǎn)是由實(shí)際問題建立微分方程及確定定解條件。

              相關(guān)推薦:

              2019考研數(shù)學(xué)19個(gè)備考疑問解答

              2019考研數(shù)學(xué) 線性代數(shù)基礎(chǔ)階段復(fù)習(xí)指導(dǎo)

              考研高數(shù):從概念、理論、方法角度說明如何復(fù)習(xí)

            文章搜索
            萬題庫小程序
            萬題庫小程序
            ·章節(jié)視頻 ·章節(jié)練習(xí)
            ·免費(fèi)真題 ·模考試題
            微信掃碼,立即獲取!
            掃碼免費(fèi)使用
            考研英語一
            共計(jì)364課時(shí)
            講義已上傳
            53214人在學(xué)
            考研英語二
            共計(jì)30課時(shí)
            講義已上傳
            5495人在學(xué)
            考研數(shù)學(xué)一
            共計(jì)71課時(shí)
            講義已上傳
            5100人在學(xué)
            考研數(shù)學(xué)二
            共計(jì)46課時(shí)
            講義已上傳
            3684人在學(xué)
            考研數(shù)學(xué)三
            共計(jì)41課時(shí)
            講義已上傳
            4483人在學(xué)
            推薦使用萬題庫APP學(xué)習(xí)
            掃一掃,下載萬題庫
            手機(jī)學(xué)習(xí),復(fù)習(xí)效率提升50%!
            版權(quán)聲明:如果考研網(wǎng)所轉(zhuǎn)載內(nèi)容不慎侵犯了您的權(quán)益,請(qǐng)與我們聯(lián)系800@eeeigo.com,我們將會(huì)及時(shí)處理。如轉(zhuǎn)載本考研網(wǎng)內(nèi)容,請(qǐng)注明出處。
            官方
            微信
            掃描關(guān)注考研微信
            領(lǐng)《大數(shù)據(jù)寶典》
            下載
            APP
            下載萬題庫
            領(lǐng)精選6套卷
            萬題庫
            微信小程序
            幫助
            中心
            文章責(zé)編:wumeique