三、一元函數(shù)積分學(xué)
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法與分部積分法.
2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會(huì)利用定積分計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積和函數(shù)的平均值,會(huì)利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題.
4.了解反常積分的概念,會(huì)計(jì)算反常積分.
四、多元函數(shù)微積分學(xué)
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.
2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).
3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多隱函數(shù)的偏導(dǎo)數(shù).
4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡單多元函數(shù)的最大值和最小值,并會(huì)解決簡單的應(yīng)用問題.
5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),了解無界區(qū)域上較簡單的反常二重積分并會(huì)計(jì)算.
五、無窮級(jí)數(shù)
1.了解級(jí)數(shù)的收斂與發(fā)散、收斂級(jí)數(shù)的和的概念.
2.了解級(jí)數(shù)的基本性質(zhì)及級(jí)數(shù)收斂的必要條件,掌握幾何級(jí)數(shù)及級(jí)數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級(jí)數(shù)收斂性的比較判別法和比值判別法.
3.了解任意項(xiàng)級(jí)數(shù)絕對(duì)收斂與條件收斂的概念以及絕對(duì)收斂與收斂的關(guān)系,了解交錯(cuò)級(jí)數(shù)的萊布尼茨判別法.
4.會(huì)求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域.
5.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會(huì)求簡單冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的和函數(shù).
6.了解麥克勞林(Maclaurin)及的麥克勞林(Maclaurin)展開式.
六、常微分方程與差分方程
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變量可分離的微分方程、齊次微分方程和一階線性微分方程的求解方法.
3.會(huì)解二階常系數(shù)齊次線性微分方程.
4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數(shù)線性差分方程的求解方法.
7.會(huì)用微分方程求解簡單的經(jīng)濟(jì)應(yīng)用問題.
所以同學(xué)們繼續(xù)按照原計(jì)劃復(fù)習(xí),夯實(shí)基礎(chǔ),把握重點(diǎn),重視總結(jié)、歸納解題思路、方法和技巧,提高解題計(jì)算能力必能在2016的考試中創(chuàng)造輝煌。最后祝同學(xué)們,金榜題名。
掃描二維碼關(guān)注"566考研"微信,第一時(shí)間獲取2016考研大綱及解析!
考研題庫【手機(jī)題庫下載】 | 微信搜索"566考研"
編輯推薦:
考試吧獨(dú)家策劃:2016年考研大綱及解析專題 ※ 微信提醒
直播解析:考試吧權(quán)威名師直播解析2016考研大綱