考研網(wǎng)校 模擬考場 考研資訊 復(fù)習(xí)指導(dǎo) 歷年真題 模擬試題 經(jīng)驗(yàn) 考研查分 考研復(fù)試 考研調(diào)劑 論壇 短信提醒 | ||
考研英語| 資料 真題 模擬題 考研政治| 資料 真題 模擬題 考研數(shù)學(xué)| 資料 真題 模擬題 專業(yè)課| 資料 真題 模擬題 在職研究生 |
考研網(wǎng)校 模擬考場 考研資訊 復(fù)習(xí)指導(dǎo) 歷年真題 模擬試題 經(jīng)驗(yàn) 考研查分 考研復(fù)試 考研調(diào)劑 論壇 短信提醒 | ||
考研英語| 資料 真題 模擬題 考研政治| 資料 真題 模擬題 考研數(shù)學(xué)| 資料 真題 模擬題 專業(yè)課| 資料 真題 模擬題 在職研究生 |
歡迎進(jìn)入:2010考研課程免費(fèi)試聽 更多信息請?jiān)L問:考研 論壇
盡管矩陣乘法不滿足交換律。但是,矩陣乘法在多方面的成功應(yīng)用,令人感到很愜意。
1.若A,B都是n階方陣,則|AB|=|A||B|。
我們知道,|A+B|難解。相比之下,乘積算法復(fù)雜得多,而積矩陣行列式公式卻如此簡明,自然顯示了矩陣乘法之成功。
特別地,如果AB=BA=E,則稱B是A的逆陣;或說A與B互逆。
A*是A的代數(shù)余子式按行順序轉(zhuǎn)置排列成的。之所以這樣做,就是恰好有(基本恒等式)AA*=A*A=|A|E,順便有|A|≠0時(shí),|AA*|=||A|E|,故|A*|=|A|的n-1次方。
2.對矩陣實(shí)施三類初等變換,可以通過三類初等陣分別與矩陣相乘來實(shí)現(xiàn)。“左乘行變,右乘列變!苯o理論討論及應(yīng)用計(jì)算機(jī)帶來很大的方便。
3.分塊矩陣乘法,形式多樣,內(nèi)函豐富。
要分塊矩陣乘法可行,必須要在“宏觀”與“微觀”兩方面都確?沙恕
AB=A(b1,b2,——,bs)=(Ab1,Ab2,——,Abs)
宏觀可乘:把各分塊看成一個(gè)元素,滿足階數(shù)規(guī)則(1×1)(1×s)=(1×s).
微觀可乘:相乘的子塊都滿足階數(shù)規(guī)則。(m×n)(n×1)=(m×1),具體如,Ab1是一個(gè)列向量
AB=0的基本推理
AB=0,即(Ab1,Ab2,——,Abs)=(0,0,——,0)
→B的每一個(gè)列向量都是方程組Ax=0的解。
→B的列向量組可以被方程組Ax=0的基礎(chǔ)解系線性表示。
→r(B)≤方程組Ax=0的解集的秩=n-r(A)→r(B)+r(A)≤n.
例:已知(n維)列向量組a1,a2,——,ak線性無關(guān),A是m×n階矩陣,且秩r(A)=n,試證明,Aa1,Aa2,——,Aak線性無關(guān)
分析設(shè)有一組數(shù)c1,c2,——,ck,使得c1Aa1+c2Aa2+——+ckAak=0.
即A(c1a1+c2a2+——+ckak)=0.
這說明c1a1+c2a2+——+ckak是方程組Ax=0的解。
但是,方程組Ax=0的解集的秩=n-r(A)=0,方程組Ax=0僅有0解。
故c1a1+c2a2+——+ckak=0由已知線性無關(guān)性得常數(shù)皆為0。
相關(guān)推薦:2009考研數(shù)學(xué)145分得主經(jīng)驗(yàn)談:復(fù)習(xí)用書篇國家 | 北京 | 天津 | 上海 | 江蘇 |
安徽 | 浙江 | 山東 | 江西 | 福建 |
廣東 | 河北 | 湖南 | 廣西 | 河南 |
海南 | 湖北 | 四川 | 重慶 | 云南 |
貴州 | 西藏 | 新疆 | 陜西 | 山西 |
寧夏 | 甘肅 | 青海 | 遼寧 | 吉林 |
黑龍江 | 內(nèi)蒙古 |